metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Tris{bis[hydrotris(1-pyrazolyl)borato- $\kappa^3 N^2, N^{2'}, N^{2''}$]iron(III)} hexaisothiocyanatoiron(III)

Shi Wang, Yi-Zhi Li,* Jing-Lin Zuo,* Cheng-Hui Li and Xiao-Zeng You

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: llyyjz@nju.edu.cn

Received 23 March 2004 Accepted 13 April 2004 Online 22 May 2004

The title compound, $[Fe(C_9H_{10}BN_6)_2]_3[Fe(NCS)_6]$ or $[Fe^{III}-(Tp)_2]_3[Fe^{III}(NCS)_6]$ [Tp is hydrotris(1-pyrazolyl)borate], crystallizes in space group $R\overline{3}$; the asymmetric unit comprises one-half of an $[Fe(Tp)_2]^+$ cation, with its Fe atom on a crystallographic inversion centre, and one-sixth of an $[Fe(NCS)_6]^{3-}$ anion, on a site of $\overline{3}$ symmetry. The anions and cations are stacked into a three-dimensional supramolecular aggregate *via* two distinct types of weak C-H··· π interactions.

Comment

Poly(1-pyrazolyl)borate ligands $[BH_nPz_{4-n}]^-$ (Pz is 1-pyrazolyl) have become one of the most popular families of ligands in coordination chemistry since their introduction. When present in a tridentate coordination mode they are often considered as analogues to π -cyclopentadienyl groups, in that both kinds of ligands effectively occupy three facial coordination sites around a metal ion and are six-electron donors with one negative charge (Trofimenko, 1993). A large number of poly(pyrazolyl)borate complexes of main-group and transition metals have been prepared, and these complexes have attracted much interest in organometallic, coordination and bioinorganic chemistry. For example, the [Cu(Tp)]₂ dimer [Tp is hydrotris(pyrazolyl)borate] has been found to be useful as a starting material for bioinorganic modelling studies (Carrier *et al.*, 1993).

Iron(III) complexes with these ligands are of interest, especially from the bioinorganic point of view, because the $\kappa^3 N$ coordination mimics the multiimidazole coordination often found at the active sites of non-heme iron proteins (Lippard, 1988). The synthesis and characterization of a binuclear iron complex, namely [Fe₂^{III}O(O₂CCH₃)₂(Tp)₂], as a synthetic analogue for methemerythrin is a good example (Armstrong, 1983; Armstrong *et al.*, 1984). Iron(II) complexes with this kind of ligand are of special interest because of their

unusual magnetic properties (Weldon *et al.*, 2001). The Fe[HB(Pz)₃]₂, Fe[HB(3,5-Me₂Pz)₃]₂ and Fe[HB(3,4,5-Me₃-Pz)₃]₂ complexes have been the subject of several variable-temperature Mössbauer spectral studies in investigating spin-state transitions (Jesson *et al.*, 1967; Long & Hutchinson, 1987; Grandjean *et al.*, 1989).

We report here the synthesis and structure of the title complex, $3[Fe^{III}(Tp)_2]^+ \cdot [Fe^{III}(NCS)_6]^{3-}$, (I) (Fig. 1), in the $R\overline{3}$ space group. The asymmetric unit comprises one-half of an

Figure 1

The structures of (a) the $[Fe(Tp)_2]^+$ cation [atom Fe1 is on an inversion centre and atoms marked with an asterisk (*) are at the symmetry position $(\frac{2}{3} - x, \frac{1}{3} - y, \frac{1}{3} - z)$] and (b) the $[Fe(NCS)_6]^{3-}$ anion (atom Fe2 is at a site with 3 symmetry). Displacement ellipsoids are drawn at the 30% probability level.

A view of a layer in (I) parallel to the $(10\overline{1})$ plane. The broken lines show weak C-H··· π interactions, as detailed in Table 1 [C9-H9···Cg1ⁱ and C5-H5···Cg2ⁱⁱ; symmetry codes: (i) y, -x + y, 1 - z; (ii) x - y, x, -z].

 $[Fe(Tp)_2]^+$ cation, with its Fe atom on a crystallographic inversion centre, and one-sixth of an $[Fe(NCS)_6]^{3-}$ anion, on a site of $\overline{3}$ symmetry. The structure of the $[Fe(Tp)_2]^+$ cation is very similar to that of $Fe(Tp)_2$ (Oliver *et al.*, 1980). The Fe atom is octahedrally coordinated to six N atoms of the two Tp ligands. The $Fe-N_{Tp}$ bond distances lie in the narrow range 1.941 (3)-1.953 (3) Å. The cis intraligand N-Fe-N bond angles are in the range 88.30 (9)-88.59 (9)°. The parameters in the anion compare favourably with those found for $(NMe_4)_3[Fe(NCS)_6]$ {values for the NMe_4^+ salt (Müller, 1977) are given in square brackets; Fe2-N7 = 2.063 (2) Å $[2.03-2.06 \text{ Å}], \text{ Fe2}-N7-C10 = 172.1 (2)^{\circ} [170-179^{\circ}], N7 C10-S1 = 178.3 (3)^{\circ} [178-179^{\circ}], N7-C10 = 1.161 (4) Å$ [1.11-1.15 Å] and C10-S1 = 1.621 (3) Å [1.57-1.66 Å]. A search of the Cambridge Structural Database (Allen, 2002) for compounds that contain the hexaisothiocyanatoiron(III) anion yielded only four hits. Of these, only one involved a metal complex as its cation (Coleman et al., 1988).

There has been increased interest recently in hydrogen bonds and other non-covalent interactions involving π acceptors (Ni et al., 2003; Li et al., 2003). Jeffrey (1997) mentions this possibility and classifies these interactions as weak hydrogen bonds. There are two types of weak $C-H\cdots\pi$ interactions in (I), which play an important role in the extended structure [Cg1 is the centre of gravity of the isothiocyanate group (type I) and Cg2 is the centroid of the N3/ N4/C4–C6 pyrazole ring (type II); Table 1] Each $[Fe(NCS)_6]^{3-1}$ ion is connected to six $[Fe(Tp)_2]^+$ units via weak C-H···Cg1 interactions, while each $[Fe(Tp)_2]^+$ ion is connected to four neighbouring $[Fe(Tp)_2]^+$ moieties via C-H···Cg2 interactions and to two $[Fe(NCS)_6]^{3-}$ units via weak $C-H\cdots Cg1$ interactions. Thus, the alternating cations and anions are stacked together into an extended three-dimensional network.

In order to describe this structure in detail, we chose one layer parallel to the $(10\overline{1})$ plane. As shown in Fig. 2, there are two types of environment for the $[Fe(Tp)_2]^+$ ion. In one, each $[Fe(Tp)_2]^+$ ion is connected to two $[Fe(Tp)_2]^+$ ions via type II interactions and to two $[Fe(NCS)_6]^{3-}$ ions via type I interactions; in the other, each $[Fe(Tp)_2]^+$ ion is connected to four $[Fe(Tp)_2]^+$ ions via type II interactions. Each $[Fe(NCS)_6]^{3-}$ ion is connected to four $[Fe(Tp)_2]^+$ ions via type I interactions. Thus, type II interactions exist only between the $[Fe(Tp)_2]^+$ units, and type I interactions occur between the $[Fe(Tp)_2]^+$ and $[Fe(NCS)_6]^{3-}$ ions. The layers are connected by the two types of weak $C-H \cdots \pi$ interactions, thus forming a three-dimensional network.

Experimental

A solution of KTp (25.2 mg, 0.1 mmol) in acetonitrile (3 ml) was added dropwise to a solution of (Et₄N)[FeCl₄] (32.5 mg, 0.1 mmol) in acetonitrile (2 ml). The mixture was stirred at room temperature for 15 h. Solid KSCN (48.6 mg, 0.5 mmol) was added to the mixture, which was stirred for another 15 h and then filtered. Red crystals of (I) suitable for X-ray analysis were obtained by slow diffusion of ether into the filtrate. IR (KBr pellet): 2508 (BH), 2069, 2029 cm^{-1} (CN).

Crystal data

$[Fe(C_9H_{10}BN_6)_2]_3[Fe(NCS)_6]$	Mo $K\alpha$ radiation
$M_r = 1850.12$	Cell parameters from 531
Trigonal, R3	reflections
a = 22.676 (2) Å	$\theta = 2.1 - 19.0^{\circ}$
b = 22.676(2) Å	$\mu = 0.93 \text{ mm}^{-1}$
c = 13.5195 (18) Å	T = 293 (2) K
$\alpha = 90.00^{\circ}$	Block, red
$V = 6020.3 (12) \text{ Å}^3$	$0.30 \times 0.25 \times 0.25 \text{ mm}$
Z = 3	
$D_x = 1.531 \text{ Mg m}^{-3}$	
-	

Data collection

Bruker SMART APEX CCD area-	2638 independent reflections
detector diffractometer	1915 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.044$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.0^{\circ}$
(SADABS; Bruker, 2000)	$h = -27 \rightarrow 25$
$T_{\rm min} = 0.76, \ T_{\rm max} = 0.79$	$k = -25 \rightarrow 27$
11 418 measured reflections	$l = -9 \rightarrow 16$
Refinement	

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0526P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.104$	$(\Delta/\sigma)_{\rm max} = 0.002$
S = 1.11	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
2638 reflections	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$
181 parameters	Extinction correction: SHELXL93
H-atom parameters constrained	Extinction coefficient: 0.00035 (9)

Table 1

Hydrogen-bonding geometry (Å, °).

Cg1 is the centroid of the isothiocyanate group and Cg2 is the centroid of the N3/N4/C4-C6 pyrazole ring.

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C9-H9\cdots Cg1^{i}$	0.93	2.54	3.399	153
$C5-H5\cdots Cg2^{ii}$	0.93	2.75	3.654	164

Symmetry codes: (i) y, -x + y, 1 - z; (ii) x - y, x, -z.

metal-organic compounds

All H atoms were identified in difference maps and were included in the refinement in the riding-motion approximation [C-H = 0.93 Å, B-H = 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(\text{carrier atom})]$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

This work was supported by the National Natural Science Foundation of China (grant Nos. NSF20201006 and 90101028).

References

Allen, F. H. (2002). Acta Cryst. B58, 380–388. Armstrong, W. H. (1983). J. Am. Chem. Soc. 105, 4837–4838.

- Armstrong, W. H., Spool, A., Papaefthymiou, G. C., Frankel, R. B. & Lippard, S. J. (1984). J. Am. Chem. Soc. 106, 3653–3667.
- Bruker (2000). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carrier, S. M., Ruggiero, C. E., Houser, R. P. & Tolman, W. B. (1993). Inorg. Chem. 32, 4889–4899.
- Coleman, A. W., Baskar, A. J., Bott, S. G. & Atwood, J. L. (1988). J. Coord. Chem. 17, 339–345.
- Grandjean, F., Long, G. T., Hutchinson, B. B., Ohlhausen, L., Neill, P. & Holcomb, J. D. (1989). *Inorg. Chem.* 28, 4406–4414.
- Jeffrey, G. A. (1997). In *An Introduction to Hydrogen Bonding*. New York: Oxford University Press.
- Jesson, J. P., Trofimenko, S. & Eaton, D. R. (1967). J. Am. Chem. Soc. 89, 3158–3164.
- Li, Y.-Z., Liu, W.-W., Li, Y.-J., Pan, G.-J. & Hu, H.-W. (2003). Acta Cryst. C59, 0611–0612.
- Lippard, S. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 344-361.
- Long, G. J. & Hutchinson, B. B. (1987). Inorg. Chem. 26, 608-613.
- Müller, U. (1977). Acta Cryst. B33, 2197-2201.
- Ni, J., Li, Y.-Z., Qi, W.-B., Liu, Y.-J., Chen, H.-L. & Wang, Z.-L. (2003). Acta Cryst. C59, 0470–0472.
- Oliver, J. D., Mullica, D. F., Hutchinson, B. B. & Milligan, W. O. (1980). Inorg. Chem. 19, 165–169.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Trofimenko, S. (1993). Chem. Rev. 93, 943-980.
- Weldon, B. T., Wheeler, D. E., Kirby, J. P. & McCusker, J. K. (2001). Inorg. Chem. 40, 6802–6812.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1750). Services for accessing these data are described at the back of the journal.